
2020-11-23

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Exception classes
and polymorphism

2
Exception classes and polymorphism

Outline

• In this lesson, we will:

– Describe inheritance in the exception classes

– Derive our own exception class from one of these classes

– Observe that our exception class is still treated as if it is one of its
base class, and so on

– Describe the features of polymorophism

3
Exception classes and polymorphism

A recap so far

• To this point, we have seen how we can extend classes with
inheritance

– We can accept or modify existing functionality

– We can introduce new functionality and member variables

• We looked at how this could apply:

– To linked lists

– To classes describing a graphical user interface

• Before we look at another higher-level example with respect to
graphical user interfaces, we will observe concrete examples of
inheritance in the std::exception class and its derived classes
and note the application of polymorphism

4
Exception classes and polymorphism

Exceptions

• We have already discussed exceptions

– We have not discussed their inheritance

std::exception

std::logic_error std::runtime_error

std::domain_error

std::invalid_argument

std::length_error

std::out_of_range

std::range_error

std::overflow_error

std::underflow_error

Abstract class

1 2

3 4

2020-11-23

2

5
Exception classes and polymorphism

Why two branches?

• A logic error is an exceptional case that should have been caught by
the programmer:

– The programmer should be checking arguments, for example, to
ensure that they fall within the acceptable bounds of a function

– It is assumed that if a logic error is thrown,
there was an issue with the source code

• A runtime error is an exceptional case that could only be determined
at runtime

– Perhaps the system was not correctly designed to handle the full
field of possible inputs

– Perhaps a value exceeds the data type used to store a result

6
Exception classes and polymorphism

Deriving from an exception class

• The default structure for all but the base std::exception class is
essentially a string together with a member function what() that

returns that string converted to a C-style string:
class exception_name : public base_exception {

public:

exception_name(char const *new_what_arg);

exception_name(std::string const &new_what_arg);

virtual char const *what() const noexcept;

protected:

std::string what_arg_;

};

7
Exception classes and polymorphism

A derived exception class

• You can derive from such an exception:
class int_domain_error : public std::domain_error {

public:

int_domain_error(char const *new_what_arg, int new_value);

int_domain_error(std::string const &new_what_arg, int new_value);

virtual char const *what() const noexcept;

virtual int value() const noexcept;

protected:

int value_;

};

8
Exception classes and polymorphism

A derived exception class

• Implementing the constructors calls the base class constructor
int_domain_error::int_domain_error(char const *new_what_arg,

int new_value):

std::domain_error{ new_what_arg },

value_{ new_value } {

// Empty constructor

}

int_domain_error::int_domain_error(std::string const &new_what_arg,

int new_value):

std::domain_error{ new_what_arg },

value_{ new_value } {

// Empty constructor

}

5 6

7 8

2020-11-23

3

9
Exception classes and polymorphism

A derived exception class

• We will also override what() and implement the value()member
function

char const *int_domain_error::what() const noexcept {

std::clog << " Logging: " << std::domain_error::what()

<< ": " << value() << std::endl;

return std::domain_error::what();

}

int int_domain_error::value() const noexcept {

return value_;

}

10
Exception classes and polymorphism

Using our derived class

• Let’s look at an implementation:
int binomial(int n, int k) {

if (n < 0) {

throw int_domain_error{

"The first argument 'n' must be zero or positive", n };

} else if ((k < 0) || (k > n)) {

throw int_domain_error{

"The second argument 'k' must be between 0 and 'n' (= "

+ std::to_string(n) + ")", k };

} else {

if ((k == 0) || (k == n)) {

return 1;

} else {

return binomial(n, k - 1) + binomial(n - 1, k - 1);

}

}

}

11
Exception classes and polymorphism

Catching an int_domain_error

• Suppose we run this program:
int main() {

try {

binomial(-5, 2);

} catch (int_domain_error &e) {

std::cout << "\"" << e.what() << "\"" << std::endl;

}

return 0;

}

Output:
>>> Logging: The first argument 'n' must be zero or positive: -5
"The first argument 'n' must be zero or positive"

12
Exception classes and polymorphism

Catching a std::domain_error

• Suppose we run this program:
int main() {

try {

binomial(5, -2);

} catch (std::domain_error &e) {

std::cout << "\"" << e.what() << "\"" << std::endl;

}

return 0;

}

Output:
>>> Logging: The second argument 'k' must be between 0 and 'n' (= 5): -2
"The second argument 'k' must be between 0 and 'n' (= 5)"

9 10

11 12

2020-11-23

4

13
Exception classes and polymorphism

Catching a std::domain_error

• Note that we cannot call additional features of the derived class:
int main() {

try {

binomial(5, -2);

} catch (std::domain_error &e) {

std::cout << "\"" << e.what() << "\"" << std::endl;

std::cout << "\"" << e.value() << "\"" << std::endl;

}

return 0;

}

14
Exception classes and polymorphism

Catching a std::logic_error

• Suppose we run this program:
int main() {

try {

binomial(5, 13);

} catch (std::logic_error &e) {

std::cout << "\"" << e.what() << "\"" << std::endl;

}

return 0;

}

Output:
>>> Logging: The second argument 'k' must be between 0 and 'n' (= 5): 13
"The second argument 'k' must be between 0 and 'n' (= 5)"

15
Exception classes and polymorphism

Catching a std::exception

• Even though we cannot create an instance
to std::exception, we can catch an exception
for class derived from that class

int main() {

try {

binomial(99, 101);

} catch (std::exception &e) {

std::cout << "\"" << e.what() << "\"" << std::endl;

}

return 0;

}
Output:

>>> Logging: The second argument 'k' must be between 0 and 'n' (= 99): 101
"The second argument 'k' must be between 0 and 'n' (= 99)"

std::exception

std::logic_error

std::domain_error

int_domain_error

16
Exception classes and polymorphism

Example classes
class A {

public:

virtual void a() const;

};

class B : public A {

public:

virtual void b() const;

};

class C : public B {

public:

virtual void c() const;

virtual void a() const override;

};

class D : public C {

public:

virtual void d() const;

virtual void b() const override;

};

void A::a() const {

std::cout << "Calling A::a()" << std::endl;

}

void B::b() const {

std::cout << "Calling B::b()" << std::endl;

}

void C::c() const {

std::cout << "Calling C::c()" << std::endl;

}

void C::a() const {

std::cout << "Calling C::a()" << std::endl;

}

void D::d() const {

std::cout << "Calling D::d()" << std::endl;

}

void D::b() const {

std::cout << "Calling D::b()" << std::endl;

}

13 14

15 16

2020-11-23

5

17
Exception classes and polymorphism

Example classesint main() {

D data{};

data.a();

data.b();

data.c();

data.d();

C &c_ref{ data };

c_ref.a();

c_ref.b();

c_ref.c();

B &b_ref{ data };

b_ref.a();

b_ref.b();

A &a_ref{ data };

a_ref.a();

return 0;

}

Calling C::a()
Calling D::b()
Calling C::c()

Calling D::d()

Calling C::a()
Calling D::b()

Calling C::c()

Calling C::a()

Calling D::b()

Calling C::a()

18
Exception classes and polymorphism

Example classes

• Additionally, we can create dynamically allocated instances of these
classes, and yet have the most appropriate member function called

int main() {

A *array[4]{};

array[0] = new A{};

array[1] = new B{};

array[2] = new C{};

array[3] = new D{};

for (int k{0}; k < 4; ++k) {

array[k]->a();

delete array[k];

}

return 0;

}

Output:
Calling A::a()
Calling A::a()
Calling C::a()
Calling C::a()

19
Exception classes and polymorphism

Polymorphism

• The features that

– An instance of a derived class can be assigned to a reference variable
of a base class

– The address of an instance of a derived class can be assigned to a
pointer to a base class

together with the fact that if you call a member function on such an
assigned instance that the most appropriate member function is
called—even if that member function is overridden in a class derived
from the base class in question—are features of polymorphism

20
Exception classes and polymorphism

Polymorphism

• We saw this with exceptions, where our derived exception could
never-the-less be caught by any of the base classes

• Also, when the what() member function was called on reference

variables of the base classes, the version we overrode in our class
was still the one that was called

17 18

19 20

2020-11-23

6

21
Exception classes and polymorphism

Summary

• Following this lesson, you now

– Seen how inheritance is used in the standard exception classes

– Know that you can extend these exception classes

– Understand how polymorphism works with classes

22
Exception classes and polymorphism

References

[1] https://en.wikipedia.org/wiki/Exception_handling

[2] https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

23
Exception classes and polymorphism

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
Exception classes and polymorphism

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

21 22

23 24

